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Abstract: The manufacturing process carried out in the investment casting industry suffers
from problems similar to other production processes. In addition, the high requirements of
the customers and the industries that require these parts mean that high quality standards
must be met. If those requirements are not achieved, this leads to the rejection of the
manufactured parts. Therefore, given the current technology revolution (i.e., Industry 4.0)
and the possibilities offered by tools such as digital twins and artificial intelligence, it is
possible to work on a generation of intelligent systems that can reduce and even avoid these
problems. Therefore, this study proposes the creation of a digital twin based on artificial
intelligence to work on proactively identifying problems before they happen and, if they are
detected, launch an optimization process that offers corrective actions to solve them. More
specifically, this work focuses on the analysis of the manufacturing process (definition, KPI
extraction, capture, distribution, and visualization), the creation of a base system for the
integral management of process optimization, and experiments developed for determining
the best method for making predictions. Additionally, we propose a recommender system
to (i) avoid the appearance of porosities and (ii) keep the elongation of the parts in the
ranges desired by the customer.

Keywords: investment casting; artificial intelligence; digital twin; system of system; machine
learning; process optimization

1. Introduction
Society has been evolving for years and increasing its population; thus, the demand

for products is increasing. Specifically, many products need metal parts produced by
the metalworking industry, which has evolved since the different metal ages in human
history [1]. In order to make this type of production feasible, the industry realized that it
must improve and optimize its production process. Currently, there are a large number of
foundries that employ different production methods. For instance, there are foundries that
work with green molding, chemical molding, or shell molding, among others. This type of
manufacturing process dates back to ancient metalworking eras. In contrast, investment
casting, although not widely adopted, is an industry with very high demand due to it being
able to generate very sophisticated parts. As a result, it is a complex and expensive process.

The investment casting process was created thousands of years ago in the Chinese
empire. The main characteristic of this process is the possibility of creating very precise
castings with difficult geometries to fill. Moreover, it is able to use a wide range of metallic
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alloys for manufacturing its parts compared with most popular foundry processes. Hence,
this process is suitable for high added value and small series of highly demanding parts [2].
The main sectors addressed by this process are the aeronautic, automotive, and weapon-
making. These types of industry are final users that require an additional degree of safety
of their products [3].

These manufacturing processes, because of their nature, have a common challenge.
They are very sensitive to variables related to the ceramic mold building up around the
wax pattern, to the melting and pouring conditions, and in some cases, to the final heat
treatment. In this way, the main problem is the presence of different defects on the final
parts, like shrinkages and pores that require re-fixing of the component or even its final
rejection [4]. Another problem is the process itself. The part is only visible at the end of
the process, once finishing operations have been carried out. At that point, if problems are
discovered, they are converted into significant loses to companies as non-quality costs. The
most common strategy to address this problem is to understand the behavior of the process
by developing process simulations based on physics concepts like fluid dynamics and heat
transfer. These models are focused on forecasting the final performance of produced parts
based on variables like the filling speed, heat transfer, and contraction during solidification.
They can make predictions in terms of slag formation, shrinkage, or hot cracks, respectively.
This kind of task makes the manufactured part more expensive. In addition, castings are
affected by a variety of different factors; for example, the metal composition, mold design,
and casting conditions, which can influence the final outcome [5].

Currently, the industry is seeking alternatives to avoid part defects [6], providing
solutions that can predict the soundness of the parts. Moreover, during the last decade,
significant effort was dedicated to improving final product quality, supported by the use of
ICT, its integration into manufacturing equipment, and the application of the internet of
things.

For example, Dučić et al. [7] reviewed several studies in the literature that make
use of artificial intelligence (AI) models to improve parts or processes. Thus, the authors
collected information regarding several types of manufacturing processes; for example,
sand processes and continuous processes, among others. They also discussed investment
casting, describing how ANNs have been used to perform numerical simulations of dif-
ferent mold temperatures [8]. More accurately, they work to manage some aspects such
as mold temperature, melting temperature, casting part material, number and location
of feeding points, diameter and length of inflow channels, and the angle of the channel
with respect to the main sprue axis. Similarly, Pattnaik et al. presented how to optimize
the injection process parameters with multiple performance features in the investment
casting process using an orthogonal array with gray fuzzy logic. This algorithm identifies
an optimal combination of the process parameters [9]. Moreover, recent studies utilize
modern techniques such as advanced deep learning models to carry out visual inspections
of parts [10]. In this case, the defect has already been produced. This means that this
approach does not work proactively, but it shows how AI techniques can be used in various
ways to improve the manufacturing process.

The arrival of Industry 4.0 [11] has significantly accelerated efforts to optimize the
manufacturing process. Specifically, this kind of work requires digitization of foundry
plants, driven by the improved data-gathering capabilities of machinery. Therefore, as a
result of ICT advances, different studies have been carried out which use these data as
the basis for new systems [12]. For example, ref. [13] presents a data-driven framework
based on machine learning techniques for estimating and screening early products in
investment casting. Additionally, digital twin technology has significantly contributed to
improving manufacturing processes. For instance, Antoniadou et al. focused its research
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on handling the robots that manage the investment casting molding stages [14]. This
kind of tools were also used for checking and detecting defects like deformations [15]
and stress [16] in aeronautics parts. Finally, a research paper was presented in the 75th
World Foundry Congress (WFC) that presents a digital twin for porosity detection [17], but
without checking the best optimization parameters to avoid pores.

Against this background, we try to combine these ICT technologies and ideas for
process optimization. We generate a digital twin that is able to observe the manufacturing
process, extract the current situation, predict the possible further t + 1 stationary state, and,
when anomalies are detected, provide corrective actions to avoid them. This is similar to
Model Predictive Control (MPC) systems [18].

To achieve efficient digitization of an industrial process, several steps were carried
out. In this way, this research started from a digital audit evaluating process traceabil-
ity, frequency, and precision of the controls. Also, digitization analysis of existing data,
preprocessing possibilities, and visualization was performed. Later, capture agents were
developed to preprocess and store data in a central and ordered database. Moreover, we
continued providing access to extracted information and generating different query meth-
ods to detect deviations and trends. Next,we built a digital twin, a virtual representation
of the process, and we provided it with the tools to identify interconnections between
variables and product output characteristics through an advanced data analytics process.
Finally, the generation of predictive algorithms to foresee the expected characteristics of
the manufactured parts and a recommender system to ensure final results were imple-
mented and included in the final system. For this research, we focused on two defects: (i)
mechanical properties and (ii) rejection rate.

The remainder of this paper is organized as follows. Section 2 describes the work
and the steps undertaken to achieve the proposed solution. Additionally, this section
discusses data generation, the methodology, and the development of the intelligent system.
Section 3 presents the results achieved with the proposed approach. Here, we introduce
the generated results for several configurations, as well as the final solution created for
investment casting. Finally, Section 4 concludes this paper and the research, providing
a discussion of the solution and suggesting future work and potential improvements to
our proposal.

2. Materials and Methods
Therefore, in an attempt to solve the already defined problem in Section 1, as well as

the difficulty of addressing the process as a whole, researchers have proposed the use of
the well-known “Divide and Conquer” (divide et impera ) methodology. More accurately,
this methodology tries to divide the general problem into smaller ones. In other words,
it tries to transform the original problem into simpler ones that are easier to solve. Thus,
once a solution has been found to solve each of them, the combination of all achieved
developments solves the general problem. This methodology is widely used to deal
with legal challenges [19], mathematical calculations [20], and computational problems
(specifically in parallel processing) [21].

Consequently, building on this idea, the steps defined in this work are detailed below
(additional information is shown in Figure 1).
1. Identification of the problem and the challenges to overcome: The goal of this initial

step is to identify the background and context of the original problem. In essence, we
focus on gaining a clear understanding of what we are aiming to solve.

2. Acquisition of knowledge: Collecting high-level knowledge provides the necessary
overview to start the research. Nevertheless, later, when we focus on a more specific
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aspect of this challenge, this step will be repeated to ensure greater accuracy in the
new generation of specific domain solutions.

3. Division of challenges: Starting from the idea of divisions mentioned earlier, we will
define the challenges to address and the specific steps for each one. For this research,
the following challenges have been identified: (i) digitization and manufacturing
process representation, (ii) creation of a proactive system based on predictions, and
(iii) retro-feedback for controlling and adjusting the manufacturing parameters. For
each of them, the following sub-phases will be performed:

a Acquisition of specific knowledge: Once the topic is defined, this stage involves
expanding the knowledge necessary to address the problem. Frequently, this
knowledge acquisition is closely linked to the exploration and understanding of
the production process being optimized.

b Definition of the experiment and the techniques to be used: At this point, the
specific research and experiments are outlined for each of the challenges to
be addressed.

c Evaluation: At this stage, the defined experiments are conducted, and results are
obtained for the approximation that has been defined.

d Analysis: Once the previous stage is complete, the collected data from the experi-
ments are analyzed.

e Interpretation of the results: When each solution has been determined for all
identified challenges, we will combine them.

Figure 1. Research methodology and explanation of AI-based digital twin system.

Any type of optimization of the manufacturing process, such as the manufacturing of
castings using an investment casting process, involves exhaustive control of all associated
operations. The more control there is and the fewer fluctuations that occur, the more
reliable the results of the process. In this manner, the optimization and stabilization of
the entire manufacturing process must be supported by Information and Communication
Technologies (ICT). Thus, according to Boscher et al. [22], the main goals are as follows:

1. Digitization of the process: It is fundamental and necessary to digitally represent the
manufacturing process.
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2. Expand the amount of digitized information, achieving a representative set that
facilitates the understanding and management of the process.

3. Generate a robust IIoT (Industrial Internet of Things) system designed to correctly
define the appropriate ICT solution.

4. Provide a solution that, in addition to describing the current behavior, can provide
digitally calculated solutions that improve the real system.

Consequently, after applying the aforementioned methodology and the main goals
described by Boscher et al., the global proposed solution is defined as a System of Sys-
tems (SoS) comprising an agent-based data gathering architecture for creating a complete
manufacturing process digital twin. This system focuses on detecting anomalies through
predictions and, finally, an advisory system to redirect the process to normality.

2.1. Digitization and Manufacturing Process Representation

As defined in [23], a system is a collection of interconnected elements that, when
combined, produce results unattainable by the elements operating independently. These
elements can be complex and large in scale, consisting of sub-elements working together to
achieve a common objective.

The concept of a system of systems refers to a scenario in which the constituent
elements are themselves collaborative systems, each exhibiting the characteristic of op-
erational independence. In particular, each individual system can achieve a functional
purpose independently, without relying on its involvement in the broader system of sys-
tems. Furthermore, each system maintains managerial autonomy, meaning it is managed
and evolves to fulfill its own goals rather than those of the overarching system [24]. As
discussed by [25,26], these attributes distinguish a system of systems from large monolithic
systems. Fields such as enterprise architecture and service-oriented architecture address
systems with these defining features, enabling the development of such solutions.

The architecture of a system is critical to its success in meeting the objectives of
its stakeholders [27]. In this case, it is defined as the collection of structures necessary
to understand the system, including its components, the relationships between these
components, and their properties.

In light of this explanation, the general sub-challenge addressed in this research is to
create different individual systems for data collection to build the digital representation
of the process. Each system can operate independently and solve the acquisition problem
within its own area or domain. Moreover, all of these modules are designed with the
necessary communication capabilities to interact and carry out their specific tasks toward
achieving the final objective: the optimization of the production process as a whole.

To carry out this data gathering process, the Production Data Manager tool, PDMan-
ager, developed by the Azterlan Research Center is used (for more information, please visit
https://www.azterlan.es/en/kh/pdmanager, accessed on 27 January 2025). Specifically,
PDManager is a real-time production control system designed to guarantee digitization,
traceability, and the orderly storage of key parameters in a centralized database for the
manufacturing process of cast components.

This system is composed of three root elements:

1. PDStorage: A centralized relational database where all the gathered data are correlated,
keeping the production history. In addition to being used for monitoring and recording
information in real time, it can be employed for knowledge generation and predictive
model creation based on these provided data. This kind of storage system and its
capability to centralize data and information is discussed in the literature [28,29].

2. PDAgents: Small software artifacts created as services that focus on the specific task
of interacting with third-party entities (i.e., other databases, files, or even machinery),

https://www.azterlan.es/en/kh/pdmanager
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extracting the necessary data from the production process itself. Krivic et al showed
in [30] how these developments can create the needed data flowing ecosystem for IoT
management. The creation of this type of micro-service is the axis of a more complex
software architecture that can also help in other domains like smart agriculture [31].

3. PDManager modules: The PDManager system has different modules (some of which
can be seen in Figure 2) that, first, allow the operator to interact with and monitor the
area where they are located and, second, provide a tool to perform manual correlation
of data when automatic correlation is not possible.

Figure 2. PDManager architecture overview where several specific modules manage each production
process step and gather data to correlate and store in a central database.

Regarding the process explanation given in Section 1, to address the aforementioned
management process, data must be extracted from the entire manufacturing process. The
deployment of PDManager focuses on implementing different modules that manage the
following process areas: (i) primary coatings, (ii) secondary coatings, (iii) melting, and (iv)
final inspections.

Specifically, the first stage of data aggregation relates to the coating process. In detail,
the primary coating is the phase where the first layer of wax is applied to the model. Its
primary purpose is to create the model’s surface. To achieve this, a liquid suspension, also
known as slurry, is used. The slurry consists of a fine ceramic material and a binder with
high heat resistance and good adhesion. Subsequently, the secondary coating involves
applying additional layers on top of the primary layer. Its main function is to provide
mechanical strength and structural stability to the mold. Therefore, coarser sand is used
together with a colloidal silica binder.

The addition of each coating, which will eventually be converted into a shell mold,
is of great importance. For primary and secondary coatings, the data to be captured are
the environmental data for the room, which are obtained from a third-party platform
provided by EKIOMTM company from Paris, France (https://www.ekiom.net/, accessed
on 27 January 2025). EKIOMTM records temperature and humidity data with different
sensors placed in the primary and secondary areas. In addition, slurry data are extracted
from the pre-existing Factory Win platform deployed in the foundry. This information is
supplied by a MicrosoftTM ExcelTM file located in the coatings laboratory. This document
compiles data related to slurry analyses carried out periodically through rigorous internal
procedures in the foundry. More specifically, the variables include density, temperature,
SiO2 percentage, and others.

These parameters are critical because if the environmental data are not correct, the
mold layers will not dry under optimal conditions, causing mold breaks. Furthermore, if

https://www.ekiom.net/
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the slurry creation is incorrect, it will cause poor adhesion between layers, which may also
cause mold breakages.

Then, in the melting area, the controlled data include the chemical composition of
the alloy, the temperature of the furnace, and other variables related to the casting. At
this stage, the data flow in two different ways. On the one hand, some data are manually
digitized through the PDManager Melting and Pouring module. On the other hand, several
pieces of data are stored in the Factory Win platform and are automatically detected and
extracted from it. Specifically, composition data are measured via spark spectrometry
analysis performed in the chemical laboratory, while the rest of the data are generated by
various sensors connected to the corresponding equipment.

For the last area, the final inspection, the gathered information pertains to the quality
results of the manufactured castings. The data focus on the occurrence of shrinkages and
mechanical properties, such as elongation, which are analyzed in this research. For this last
data extraction process, information about inclusions is obtained from PDManager, which is
connected to Factory Win and continuously updated with results from fluorescent particle
tests performed on all created parts. This process is carried out by qualified technicians
who determine the number of pores/inclusions in each part. Additionally, elongation
data for castings are provided. For this purpose, representative standard specimens from
the manufacturing order are machined and later tested to obtain the final mechanical
properties, which are then digitized via PDManager.

Once the data are extracted and stored in the appropriate repository, they should
be utilized to improve the day-to-day process. Thus, they will be used to represent the
production process, delivering the right information to the right people at the right time.
The most effective way to achieve the goal of data distribution is by implementing an ob-
server/observable pattern [32], which is based on the subscriber/publisher paradigm [33].

During the past decade, communication schemes have been redesigned and reimple-
mented with the aim of integrating data from several heterogeneous data sources. Moreover,
the introduction of certain standards (for instance, the IEC 61850 standard for substation
automation [34]), which defines a data model oriented toward objects and functions, allows
for modeling all the devices of a system by categorizing them according to their func-
tionalities. This technology also enables their integration into a high-speed peer-to-peer
communication network through standardization. However, further improvements were
needed to establish an open and standardized working environment. The solution was
the creation of a real-time publisher/subscriber communication model, as demonstrated
in [35]. In fact, this type of communication is widely used and well documented in books
and research papers such as the following: [33,36–38].

In a effort to combine this communication and data distribution technologies, Azterlan
developed Sentinel (for more information about Sentinel, please visit https://www.azterlan.
es/en/kh/sentinel-predictive-control, accessed on 27 January 2025). It is an integral
system for data distribution and process monitoring, as well as anomaly detection, digital
representations of the process, alert communication, and a tool for incorporating and
utilizing different Artificial Intelligence (AI) models. Despite all the features available in the
Sentinel system (illustrated in Figure 3), at this stage of development, Sentinel is focused
solely on distributing, displaying, and presenting the gathered information. Hence, for
now, we define Sentinel as a software system for automated and real-time data distribution.
Sentinel displays key information and alerts to the people and locations where they are most
useful. It allows for the deployment of dashboards or control panels designed according to
user needs. These control panels can be implemented as static displays (on-site) or with
navigation capabilities across different levels of information depth (e.g., process managers,
laboratory, quality department, maintenance, and management, among others).

https://www.azterlan.es/en/kh/sentinel-predictive-control
https://www.azterlan.es/en/kh/sentinel-predictive-control
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Figure 3. Sentinel architecture overview where the 3 main modules are shown. One is the manager of
the system: the place where the business logic is included. Then, the viewer is shown the specific
information in the selected manner, and the smart cloud service locates the predictive models and the
artificial intelligence modules.

In order to define and design the data distribution, as well as the visualization methods
in Sentinel, the following aspects have been analyzed:

1. KPI identification: Firstly, the work team determines the key process indicators that
are valuable for the day-to-day work and the management of the process. In this way,
the different areas that can be included and the different data that can be employed
are studied here.

2. KPI analysis: Once the interests and possibilities were listed, we developed an analysis
addressing all key stages of the process. To achieve this, six different variables were
compared using the Likert scale [39] and combined in a Star Plot. The variables
used are: (i) frequency, (ii) accuracy of the available information, (iii) visualization
or its necessity, (iv) capture and storage media, (v) possibility of data access, and (vi)
traceability.

3. KPI Priority. After the previously conducted study, a filtering process is developed
based on the priority of working on these indicators. This analysis is performed using
a scatterplot.

4. Data distribution location. As the final task, the appropriate location for each visual-
ization is determined.

In the end, the management of all input sources was performed, as shown in Figure 4.
Four different PDManager capture agents were developed to integrate these data sources.
Subsequently, all the information was centralized in a single database, allowing Sentinel to
utilize it for data distribution and visualization in this specific use case.

2.2. Creation of a Proactive System Based on Predictions

Thanks to the work defined and described in Section 2.1, we now have all relevant
process information available. This information flows in real time through our capture
and storage system. Hence, all the described data serve as the raw input necessary to
create an intelligent process management system. The collected data enable the digital
representation of the process using advanced techniques. In fact, these data allow us to
develop a proactive intelligent system that anticipates potential problems in the process.
Its creation will be carried out through what is known as a digital twin.
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Figure 4. Data gathering: overview scheme of data sources, data capture agents, and centralization of
information.

More accurately, the concept of a digital twin [40] refers to the creation of a virtual
and intangible representation based on real data. Its objective is to replicate a physical or
real situation. In our case, it focuses on representing the investment casting manufacturing
process. The main contribution of a digital twin is to decouple the physical world from the
virtual one, enabling analysis of how the process operates and subsequently preventing
unexpected deviations in both virtual and real representations.

For our use case, the digital twin must facilitate process improvements aimed at defect
reduction, energy efficiency, and time-to-market reduction. To achieve these objectives, the
digital twin must operate under three clear axioms, as well defined in [41]:

• Proactivity: The system must be able to anticipate adverse situations. In fact, the digital
twin makes use of the digital world through simulations and artificial intelligence.
Thus, it will be able to determine the possible state of the production process in the
near future (i.e., a temporary state t + 1).

• Adjustment: The management of the virtual environment must always work within a
specific configuration. This means that the digital twin must meet the requirements of
the manufacturing process. In other words, none of the tests or simulations that are
developed will break the rules that govern the physical representation of the process.

• Business intelligence: The twin will even serve as a knowledge management tool.
Specifically, it is a repository of business intelligence that encompasses everything
needed to manage all the tasks associated with the actual process. By utilizing the
digital twin and providing it with this repository, business knowledge will remain
within the company, preventing the much-feared knowledge leakage.
For a digital twin to work, it must apply the same methodology that a doctor does.
This methodology is called “diagnosis”, and its basic steps are as follows [22]:

(i) Observation: The digital twin is based on observation, which serves as the
foundation for the digital representation of the real world. Observation
focuses on extracting raw data, as previously explained and defined. This
observation is essential because it enables the identification of operational
patterns, trends, and other aspects that will be used in subsequent tasks. It is
important to note that without observation—in other words, without a data
capture process—developing this type of technology would not be possible.

(ii) Evaluation: Making use of the knowledge already loaded into the twin, as well
as the data that are being produced in real time, our system develops a process
known as “evaluation”. This process performs different simulations based on
the current real situation it receives through “observation”. Subsequently, the
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further operations required to adjust and optimize the process will depend
on the evaluations or predictions obtained in this stage.

(iii) Decision making: The previous processes, by themselves, do not add value.
That is why a correction or adjustment of the monitored activity is needed.
Thus, taking into account the results of the observation and evaluation steps,
solver algorithms find the appropriate fit for the purpose of the twin. After-
wards, the system proceeds to communicate the results or actions that must
be put into practice [42]. Sometimes, they are sent to humans (M2H–machine
to human communication), and other times, they are sent to machines via
M2M (machine to machine).

In order to generate a tool capable of representing the reality of the manufacturing
process, specifically, the production of molds and parts flowing in the investment casting
workflow, it is necessary to be able to represent the flow of these molds in the lost wax
casting process and the events that occur in it. In this case, the data obtained from the
primary coating, secondary coating, melting, and inspection areas will be transformed into
a sequence of enqueued elements that are sequentially characterized in each stage and
digitally represented as a FIFO queue.

Hence, our digital twin was formally defined as a queue Q of z discrete molds, where
V is the sum of PC + SC + M + I molds (PC for primary coating and previous molds, SC
from primary coating to secondary coating, M from secondary coating to melting, and
I for final inspections). Some variables will not be informed until the mold arrives at
the specific stage where that data are gathered. In the end, the entire representation is
defined as Qxn, ..., x2, x1 → Vpcn, .., pc2, pc1, scn, .., sc2, sc1, mn, .., m2, m1, in, .., i2, i1. For our
use case, |V| = 40 → |PC| = |SC1| = |M1| = |I1| = 10, and when the full set of PC
molds is ready, they are all moved together to the next step, pushing them forward in the
PC → SC → M → I sequence.

In order to reproduce the current situation of the process, the digital twin must be
able to model the movements of the molds, as explained before. In this way, it performs
event-based management of the system, detecting when a group of molds reaches a new
sequential step, represented by each red square in Figure 5. In fact, the digital twin operates
under the following events:

• The first event occurs when a set of molds is being generated in the primary coating
stage. To detect this, the digital twin is subscribed to the PDManager storage database.
During the coating process, the system collects data until the last coating has dried and
the robot moves the mold to the next stage. When the full set of molds is completed,
the digital twin receives this event from the database and triggers a series of tasks to
digitally generate the process state, update the digital twin, perform the associated
calculations, and finally, move these molds to the next step.

• The second event is triggered when the secondary coating is applied. The digital twin
is again subscribed to the storage, and the event is fired to indicate that some work
must be performed. This second event functions similarly to the previous one but
pertains to the creation of the final mold. Again, when all molds are created, the digital
representation is updated, and all calculations are executed. Finally, the entire set of
molds is promoted to the next stage.

• The last detected event occurs when the casting is finally created. This means that
the final event is fired when the metal is poured into the mold. Again, the system
operates in batches of molds. The subscription to the PDManager database triggers
the management process for this step. At that moment, the digital twin receives
the information about the creation of the castings, and all of them are moved to the
final steps. These last steps are not monitored in this research, though they could



Appl. Sci. 2025, 15, 2013 11 of 35

be incorporated in future developments. Nevertheless, after the completion of the
castings, the quality of each casting is measured, and these data are gathered for
the prediction methods. While this is not a step for the digital twin, it is crucial for
anticipating the behavior of each casting concerning mechanical properties and the
appearance of porosity.

Figure 5. Investment casting process division and grouping for predictions and optimizations. First
group, with the slurry coating work (PC). Then, as second group, the combination of both coating
stages, slurry, and stucco (PC + SC). Finally, the complete group including previous coating stages
and the pouring (PC + SC + M).

Due to these events and the data gathering process, the digital twin is able to charac-
terize each mold. At this moment, the mold Vj has the set of variables PCi, SCi, Mi, Ii that
can now be sent to the machine learning models, which will attempt to predict the state the
part will reach when the final inspection is carried out. In the same way that the system
manages the events, the predictions will also be triggered at every grouping step illustrated
in Figure 5.

In order to develop the aforementioned predictions and considering that we have
extracted all the manufacturing process results, as well as the recorded results in both pre-
diction objectives, the best approach is the employment of supervised learning. Specifically,
this is a type of machine learning where models are trained using labeled data. The labeled
data include the corresponding correct output. This learning is performed using statistical
classifiers to categorize data based on patterns in the labeled examples. These classifiers
learn from the labeled data to make predictions on new and unseen data. The process relies
on statistical methods to model the relationship between input features and target labels.

To make future predictions and to properly evaluate the machine learning models for
the prediction of both aforementioned objectives, we applied the following methodology.

• Cross validation: In order to obtain a proper representation of the data, we must use
as much available information as possible. For this purpose, K-fold cross validation is
usually used in machine learning experiments [43]. In our experiments, we performed
a K-fold cross validation with k = 10. In this approach, our dataset was split into 10
sets of learning (66% of the total dataset) and testing (34% of the total data).

• Teaching the model: For each fold, we performed the learning phase of each algorithm
using the corresponding training dataset, applying different parameters or learning
algorithms depending on the model. Due to the lack of knowledge about the perfor-
mance of this type of prediction in the investment casting process and considering
that this research is in an initial stage, we decided to use classical machine learning
models to validate whether the methodology could be useful. More accurately, we
used the following models:

– Classical statistical classifiers: This type of classifier has been widely used in
machine learning due to its simplicity, interpretability, and effectiveness with
relatively small datasets [44]. One of the key advantages of these classifiers
is that they are computationally efficient and easy to implement. Although
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newer machine learning models, such as deep learning approaches, have gained
popularity, classical statistical classifiers remain valuable for their reliability and
ease of use in many practical applications [45–49]. Specifically, we conducted
our research by evaluating the following classical algorithms:

* Bayesian networks: For Bayesian networks, we used different structural
learning algorithms, including K2 [50], hill climber [51], and Tree Aug-
mented Naïve (TAN) [52]. Moreover, we also performed experiments with a
naïve Bayes classifier.

* K-nearest neighbor: For K-nearest neighbor [53], we performed experiments
with k = 1, k = 2, k = 3, k = 4, k = 5, and k = 6.

* Artificial neural networks: We used a three-layer Multilayer Perceptron
(MLP) [54] taught using a back-propagation algorithm.

* Support vector machines: We performed our experiments with a poly-
nomial kernel [55], a normalized polynomial kernel [56], a Pearson VII
function-based universal kernel [57], and a radial basis function (RBF)-based
kernel [58].

* Decision trees: We performed experiments with the C4.5 algorithm [59] and
random forest [60], an ensemble of randomly constructed decision trees. In
particular, we tested the random forest with a variable number of random
trees N, from N = 50 to N = 350 in increments of 50.

* Voted perceptron: This algorithm, described in [61], is an extension of the
basic perceptron algorithm that improves classification performance by
combining multiple perceptron models. It was selected because it helps
improve accuracy and robustness compared to standard perceptrons.

– Combined machine learning classifiers: Classifiers by themselves are able to
obtain good results, but we cannot ensure that a specific classifier is perfectly
suitable for the prediction of every objective in the investment casting process.
To solve this problem, several studies have combined classifiers [62]. These
techniques seek to obtain a better classification decision despite incorporating a
higher degree of complexity into the process. From a statistical point of view [63],
assuming a labeled dataset Z and n as the number of different classifiers with
relatively good performance in making predictions for Z, we can select one of
them to solve classification problems. However, there is a risk of not choosing the
correct one. Therefore, the safest option is to use all of them and take an average
of their outputs. The resulting classifier is not necessarily better but reduces the
risk induced by using inappropriate classifiers. From a computational point of
view [62], some supervised machine learning algorithms, in their learning phase,
generate models based on local maximum solutions. Thus, an aggregation of
classifiers is much closer to the optimal classifier than only one of them. Similarly,
the casting process itself can be categorized as linear or nonlinear. By using
these combination methods, we are capable of designing a collective intelligence
system for classification which incorporates both linear and nonlinear classifiers.
The combination methods we used to develop the experiments are detailed
below.

* By vote: Using democratic voting to classify elements is one of the oldest
strategies for decision making. Extending electoral theory, other methods
can allow for combinations of classifiers [64]. Specifically, we tested (i) the
majority voting rule, (ii) the product rule, (iii) the average rule, (iv) the max
rule, and (v) the min rule.
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* Grading: The base classifiers are all the classifiers that we want to combine
through the grading method [65], and these were evaluated using k-fold
cross validation to ensure that each of the instances was employed for the
learning phase of each classifier. Therefore, the classification step is as
follows: [65]. First, each base classifier makes a prediction for the instance
to be classified. Second, meta-classifiers qualify the result obtained by the
base classifiers for the instance being classified. Finally, the classification is
derived using only the positive results. Conflicts (i.e., multiple classifiers
with different predictions achieving a correct result) can be solved using the
vote method or by employing the estimated confidence of the base classifier.
For this research, the classifiers used in the grading method are naïve Bayes,
a Bayesian network taught with the TAN algorithm and, finally, kNN with k
ranging from 1 to 5.

* Stacking: The stacking method [66] is another approach to combining clas-
sifiers that aims to improve the ensemble based on the cross-validation
method. For the classification process, first, we carry out a query to the
classifiers in level 0 (original classifiers). Second, once we obtain the answer
from all of them, we apply the transformations of k numbers that produce
the input dataset for level 1 (this is the result transformation step). Third,
level 1 classifiers derive the solution. Finally, the response is transformed
back into the level 0 space to provide the final result. The whole process
is known as stacked generalization and can be further enhanced by adding
multiple stacking levels. Again, and to enable comparisons of this method
with grading, the classifiers used are naïve Bayes, a Bayesian network taught
with the TAN algorithm and, finally, kNN with k ranging from 1 to 5.

* Multi scheme: This is a meta-classification method implemented by Weka
[67] which allows for the combination of classifiers in a simple manner.
This method employs a combination rule based on the results obtained via
cross validation and the error rate measured as the mean square error from
several classifiers.

• Testing the model: For each fold, first, we measured the accuracy of the model; in
other words, how well the classifier performs in terms of correctly classified instances.
Moreover, we also evaluated the error rate between the predicted value set X and the
real value set Y (both having the size of the testing dataset m) with mean absolute
error (MAE) (shown in Equation (1)).

MAE =
∑n

i=1|yi − xi|
n

=
∑n

i=1|ei|
n

. (1)

Similarly, we used Root Mean Square Error (RMSE) (shown in Equation (2)).

RMSE =
1
n
·
√

n

∑
i=1

(yi − ŷi)2 (2)

Finally, we also tested each model measuring the Area Under the ROC Curve
(AUC) [68]. This ranges from 0 to 1, where 0.5 indicates random guessing and 1.0
indicates perfect classification. Higher AUC values indicate better model performance.

2.3. Retro-Feedback for Controlling and Adjusting the Manufacturing Parameters

With all the development carried out in this research, we have created an ex ante
method to foresee several defects or characteristics in the investment casting manufacturing
process. Throughout this research, several topics of discussion have emerged, and we have
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worked to address them. In particular, by using the classifiers as a stand-alone solution,
(i) we cannot be completely sure that the selected classifier is the best one to generalize
the manufacturing process, (ii) the learning algorithms employed for creating some of the
machine learning classifiers only find a local maximum; hence, the final result is not optimal,
and (iii) by using a single classifier, we should generate a classifier close to the process’s
nature (linear or non-linear). Hence, we solved all these problems by developing and
testing several methods to combine heterogeneous classifiers, as explained in Section 2.2.
This new approach was safer because we used all the classifiers instead of selecting just
one, allowing us to approximate their behavior to the optimal one.

Nevertheless, although we were able to detect the problems using an ex ante method,
we were not able to modify the plant parameters to solve them online. In fact, predicting
the near-future situation t + 1 without the ability to address it will only provide us with the
knowledge that we are producing faulty parts before they are evaluated. We will continue
to face all the problems associated with these deviations, even though we are aware of their
existence. Therefore, as the final part of the digital twin—and also the main component of
the system—an advisory system for adjusting the process has been designed to close the
loop.

The observation or data extraction process, along with its output tags, has allowed us
to work on deriving the knowledge embedded in the data itself. This research has focused
on creating an action recommender aimed at maintaining the system within the desired
area, defined as standard or normal production. Thus, when the previously explained
predictors detect an anomaly, the advisory system will begin working to find a way to
redirect the process and prevent the occurrence of that problem.

In this way, to build this system, the knowledge was extracted in two different man-
ners. On the one hand, we extract it from process engineers. This is a manual task that
incorporates the gathered expert knowledge into the final system. On the other hand, some
patterns were extracted as associative rules using the Tertius [69] algorithm. The module re-
sponsible for evaluation and recommendation generation will be aware of the current state
of the process (information obtained from the observation of the digital twin), the predicted
state the production will reach (predictions or simulations generated by the digital twin),
and finally, the set points and limits within which the process must operate (provided by
engineers). Once these data have been unified, the process will be automatically redirected
to prevent the detected problem or deviation.

Sometimes, the recommendation system will focus on increasing or decreasing the
working range of one or more variables. At other times, it will determine that it is better to
start producing within new ranges, adjusting the limits of that variable to a new optimal
production zone. This system aims to modify control ranges that have become obsolete
or to discover new manufacturing trends that optimize the process, reduce scrap, and,
consequently, increase productivity.

The generated adjustments in primary and secondary coatings affect the acceptance
and control ranges of immersion baths and climatic conditions. Keep in mind that modi-
fications will be made to variables that allow for actionable changes and can be adjusted
with small additions. In cases of major modifications, the bath would need to be completely
changed, which will not be applied in the current batch but will be considered for the next
production. Optimizations in the melting area directly affect changes or adjustments to the
chemical composition of the melt to ultimately achieve an optimized metal for casting.

In summary, the recommendation system takes the data for each recorded variable
(those defined during the information gathering process detailed earlier) and evaluates
them by combining the predictions of the classification models with the working ranges
extracted through the learning that the system itself has developed for each variable. In
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this way, depending on the evolution of the recorded data concerning the output variables
(specifically, porosity defects and the mechanical property of elongation), it provides
recommendations. These recommendations focus on which variables should be adjusted
and the direction of adjustment, whether increasing or decreasing their values. The system
is supported by a concise expert system based on process knowledge, which is continuously
adapted using the normality ranges detected during process data generation.

3. Results
Once the research work has been developed and the different solutions have been

obtained for each of the challenges identified in Section 2, we describe the results achieved
in this section. Each identified challenge is summarized in its specific subsection. However,
in brief, the solutions to the three defined challenges in our methodology were satisfactory,
providing insight into how this approach can assist in managing a production process as
complex as investment casting.

3.1. Digitization and Manufacturing Process Representation

The first of the challenges identified through our “divide and conquer” methodology,
defined in Section 2, is related to data extraction, digitization, and process representation.
Hence, to address this challenge, different tasks were performed, achieving the following
results.

Firstly, after the KPI identification—in other words, obtaining a list of areas and
possibilities in data extraction tasks—a deep analysis was conducted. Specifically, this
analysis focused on comparing and contrasting different manufacturing process areas to
determine the feasibility of data capture. To this end, the frequency, accuracy of the data,
visualization, capture and storage, access to the data, and their traceability in the different
areas of the investment casting process were analyzed. The final results of this analysis are
illustrated in Figure 6.

As shown in Figure 6, the lowest scores were observed in the “access to data” and
“visualization” categories. The primary reason is that all related data are stored in complex
tables, systems, or other sources that are not easily connected. Moreover, there is a lack of
visualization tools to effectively distribute this information. Conversely, “frequency” and
“accuracy” scored higher due to the rigorous testing procedures already established within
the investment casting process for each area. This figure also guided the research team in
selecting the areas to be included in this work regarding the measurements. In this way,
primary and secondary coating, as well as the melting area and final inspections, were
selected.

Secondly, taking into account the vast number of variables that could be extracted in
each area, a new analysis was conducted to identify the final list of variables to prioritize.
This analysis focused on the expected impact and digitization potential of each selected
variable. A summary of these results is shown in Figure 7.

Figure 7 is a dispersion plot where the degree of simplicity in digitization is represented
on the y-axis, and the impact of different variables is shown on the x-axis. Furthermore,
each selected variable is categorized into stages, with each stage represented by a different
color, as described in the legend. The legend refers to stages 1, 2, and 3, which can more
accurately be translated as primary coating for stage 1, secondary coating for stage 2, and
melting for stage 3.

After conducting this analysis and creating the plot, the variables to be used were
selected in the following order. First, the variables that appear in the top-right corner were
selected. These variables, from the three areas, are labeled as priority 1 variables and must
be gathered in the first iteration of the data gathering work. Second, the variables that
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appear in the top-left corner, labeled as priority 2 variables, were selected for the second
iteration of the process. Third, the variables that appear in the bottom-right corner were
selected. Finally, the remaining variables were considered. Hence, this plot was useful for
determining the strategy and work plan for data gathering and process representation.

Figure 6. Start plot generated as a summary of results when the different areas were analyzed and
evaluated using a Likert scale for 6 different categories such as data traceability, frequency, and
precision, among others.

Figure 7. Dispersion plot with the selected area (i.e., primary coating—stage 1, secondary
coating—stage 2, and melting—stage 3) correlating the impact, the digitization potential, and the
priority of each variable to be added to the system.

Then, once the variables for each area and their priority were defined, the data ex-
traction process was executed. As a result of this work, several visualization screens were
created and distributed throughout the plant. These screens were designed in close collabo-
ration with engineers and foundry workers to ensure that the information was displayed
in the most effective way and in the correct locations. During this research, 25 screens were
developed and distributed across different areas of the process.

The most important developed screens are those related to primary coating and
secondary coating, as they handle the most critical variables of the process. With this
data distribution and visualization system, anomalies can be detected quickly, facilitating
prompt corrective actions. Some screens are shown in Figure 8. Image (a) in the figure
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displays the specific screen for primary coatings, while image (b) presents data extracted
from the melting area. The users can navigate through the screens, and they also have
an auto-navigation feature, displaying information in response to triggered events or in a
cyclical visualization mode.

(a)

(b)

Figure 8. Generated screens for a Spanish investment casting foundry with Sentinel software v2023.06
to distribute the information over the investment casting plant. (a) Primary coating screen with data
visualization and data evaluation under predefined limits. (b) Melting and furnace information
provided by Sentinel in the investment casting process.

Finally, each designed data representation and its corresponding screen was dis-
tributed throughout the plant by installing multiple monitors. Figure 9 shows an example
of two of these monitors displaying the information identified as critical in the area where
the deployment was made.
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Figure 9. Examples of Sentinel data distribution deployment over the investment casting plant.

3.2. Proactive System Based on Predictions

The second identified challenge focuses on the generation of the prediction system
associated with the digital twin. As explained in Section 2.2, machine learning techniques,
specifically supervised learning, are used since all gathered evidence is labeled with its
corresponding output. Likewise, we worked on the development of predictive models
associated with two different objectives: the first focused on predicting the mechanical
property of elongation, and the second on predicting the appearance of porosities. Ad-
ditionally, given that the prediction methodology is applied at three different stages, we
trained and tested models that operate in the primary coating area, in the combination
of primary and secondary coatings, and finally, in the melting area. Thus, these analyses
were conducted first using classical classification models and then using meta-classification
models to mitigate potential issues associated with classical models.

This section reports and describes the results that were obtained when the aforemen-
tioned predictive models were tested.

3.2.1. Prediction Models Applying Classical Machine Learning Methods

Once we conducted our research using classical machine learning methods, the follow-
ing results were obtained. To facilitate readability, we have divided the results according to
the classification area and then by the selected target.

Primary Coating Area Predictions

Regarding the results achieved by traditional classifiers using primary coating data
to predict the elongation of the castings (see Table 1), it can be observed that the highest
accuracy value was obtained by applying a kNN classifier with the value of k = 2. This
classifier was able to achieve a fairly high level of accuracy of approximately 80%. However,
the datasets for the learning phase could be enhanced. The rest of the classifiers provided
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good results, as most of them remain above 75% accuracy. In contrast, surprisingly, one
of the SVMs, the one taught with the RBF kernel, did not exceed 60% accuracy. On the
other hand, the Bayesian networks performed well, even improving the AUC value, which
shows that the management between false positives and false negatives could be better
when we use this algorithm.

Table 1. Results predicting the mechanical property elongation when we applied classical machine
learning methods using data extracted only from the primary coating area. The best classifier, marked
in gray, was the kNN with k = 2, with an accuracy level (percentage of correctly classified instances)
close to 80%.

Classifier Accuracy MAE RMSE AUC

Bayes network (K2) 77.48 0.26 0.41 0.81
Bayes network (hill climber) 77.48 0.26 0.41 0.81
Bayes network (TAN) 76.00 0.35 0.43 0.76

Naïve Bayes 76.74 0.27 0.41 0.80

Artificial neural network MLP 71.64 0.34 0.48 0.70

Support vector machines (polynomial kernel) 77.36 0.23 0.43 0.77
Support vector machines (normalized polynomial kernel) 74.05 0.26 0.48 0.74
Support vector machines (Pearson VII) 74.26 0.26 0.47 0.74
Support vector machines (radial basis function) 59.33 0.41 0.63 0.63

Voted perceptron 73.79 0.26 0.47 0.78

K-nearest neighbors (K = 1) 74.55 0.34 0.47 0.71
K-nearest neighbors (K = 2) 79.71 0.32 0.41 0.79
K-nearest neighbors (K = 3) 77.60 0.36 0.43 0.75
K-nearest neighbors (K = 4) 77.74 0.36 0.43 0.75
K-nearest neighbors (K = 5) 76.86 0.36 0.43 0.76
K-nearest neighbors (K = 6) 76.86 0.36 0.43 0.76

C4.5 66.50 0.42 0.48 0.67

Random forest (num. iterations = 50) 75.50 0.34 0.44 0.73
Random forest (num. iterations = 100) 75.31 0.34 0.44 0.74
Random forest (num. iterations = 150) 75.17 0.34 0.44 0.73
Random forest (num. iterations = 200) 75.17 0.34 0.44 0.73
Random forest (num. iterations = 250) 75.50 0.34 0.44 0.73
Random forest (num. iterations = 300) 75.64 0.34 0.44 0.74
Random forest (num. iterations = 350) 75.31 0.34 0.44 0.74

Then, when the same data were used to predict the behavior of castings in terms of
pore formation, an accuracy of 76% was achieved using the kNN algorithm. The optimal
k value that gave the best results was k = 1. It seems that this defect is more difficult to
foresee due to the majority of the results not exceeding 70% accuracy. Only one classifier,
an artificial neural network, achieved results comparable to the kNN. Perhaps, applying a
different type of network and increasing the number of epochs in the learning phase could
improve performance. Table 2 summarizes the obtained results, including error rates, to
facilitate comparisons between classifiers.
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Table 2. Results predicting porosity apparition when we applied classical machine learning methods
using data extracted only from the primary coating area. The best classifier, marked in gray, was the
kNN with k = 1 with an accuracy level (percentage of correctly classified instances) close to 76%.

Classifier Accuracy MAE RMSE AUC

Bayes network (K2) 62.75 0.39 0.47 0.65
Bayes network (hill climber) 63.62 0.43 0.49 0.47
Bayes network (TAN) 67.07 0.37 0.46 0.68

Naïve Bayes 64.05 0.39 0.46 0.68

Artificial neural network MLP 74.98 0.27 0.41 0.77

Support vector machines (polynomial kernel) 58.46 0.42 0.64 0.44
Support vector machines (normalized polynomial kernel) 65.87 0.34 0.58 0.48
Support vector machines (Pearson VII) 75.43 0.25 0.47 0.64
Support vector machines (radial basis function) 68.75 0.31 0.56 0.50

Voted perceptron 64.04 0.36 0.58 0.61
K-nearest neighbors (K = 1) 75.73 0.32 0.44 0.71
K-nearest neighbors (K = 2) 74.52 0.35 0.45 0.66
K-nearest neighbors (K = 3) 66.09 0.40 0.47 0.56
K-nearest neighbors (K = 4) 67.04 0.40 0.47 0.57
K-nearest neighbors (K = 5) 65.86 0.40 0.46 0.61
K-nearest neighbors (K = 6) 65.62 0.40 0.46 0.64

C4.5 67.79 0.43 0.47 0.49

Random Forest (Num. Iterations = 50) 68.20 0.38 0.47 0.64
Random forest (num. iterations = 100) 69.05 0.38 0.47 0.64
Random forest (num. iterations = 150) 69.59 0.38 0.47 0.64
Random forest (num. iterations = 200) 68.79 0.38 0.47 0.64
Random forest (num. iterations = 250) 69.16 0.38 0.47 0.64
Random forest (num. iterations = 300) 68.62 0.38 0.47 0.65
Random forest (num. iterations = 350) 68.21 0.38 0.47 0.65

Primary and Secondary Coating Area Predictions

The following experiments, illustrated in Table 3, focused on predicting elongation
using data from both primary and secondary coatings. The best classifier in this case
was the Bayesian network trained with the K2 algorithm. However, when comparing
these results with those obtained using only primary coating information, it appears that
incorporating secondary coating data introduced noise, leading to a decrease in classifier
performance. Again, another classifier that closely approaches the best performance is the
MLP artificial neural network with backpropagation. Additionally, the SVM trained with
the Pearson VII kernel achieved accuracy values nearly identical to the Bayesian network,
differing by only a few decimals. All random forests performed similarly and were very
close to the best SVM.

Table 3. Results predicting the mechanical property elongation when we applied classical machine
learning methods using data extracted from both primary and secondary coating areas. The best
classifier, marked in gray, was the Bayesian network learned taught with the K2 algorithm, with an
accuracy level (percentage of correctly classified instances) close to 77%.

Classifier Accuracy MAE RMSE AUC
Bayes network (K2) 76.95 0.26 0.40 0.84
Bayes network (hill climber) 75.64 0.28 0.42 0.82
Bayes network (TAN) 72.24 0.31 0.43 0.80

Naïve Bayes 74.76 0.27 0.41 0.83
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Table 3. Cont.

Classifier Accuracy MAE RMSE AUC

Artificial neural network MLP 75.21 0.27 0.43 0.82

Support vector machines (polynomial kernel) 72.52 0.27 0.49 0.73
Support vector machines (normalized polynomial kernel) 74.48 0.26 0.46 0.75
Support vector machines (Pearson VII) 76.79 0.23 0.44 0.77
Support vector machines (radial basis function) 73.93 0.26 0.47 0.75

Voted perceptron 72.57 0.27 0.48 0.80

K-nearest neighbors (K = 1) 65.79 0.32 0.50 0.74
K-nearest neighbors (K = 2) 66.05 0.33 0.44 0.78
K-nearest neighbors (K = 3) 68.60 0.36 0.43 0.78
K-nearest neighbors (K = 4) 69.50 0.36 0.44 0.78
K-nearest neighbors (K = 5) 69.50 0.36 0.44 0.78
K-nearest neighbors (K = 6) 72.55 0.36 0.43 0.78

C4.5 66.24 0.38 0.48 0.80

Random forest (num. iterations = 50) 74.10 0.34 0.42 0.80
Random forest (num. iterations = 100) 74.24 0.34 0.42 0.80
Random forest (num. iterations = 150) 74.38 0.34 0.42 0.79
Random forest (num. iterations = 200) 74.21 0.34 0.42 0.79
Random forest (num. iterations = 250) 74.36 0.34 0.42 0.79
Random forest (num. iterations = 300) 74.07 0.34 0.42 0.79
Random forest (num. iterations = 350) 74.05 0.34 0.42 0.79

Then, regarding the prediction of porosity formation using primary and secondary
coating information, Table 4 summarizes the measured results. In this case, the best-
performing classifier was kNN with a value of k = 6. Its accuracy was a 71%. As with
the elongation prediction, we observe that introducing secondary coating data leads to a
decline in results.In this case, there were only two classifiers that reached or exceed 70%
accuracy, the aforementioned kNN with k = 6 and the voted perceptron.

Table 4. Results predicting porosity apparition when we applied classical machine learning methods
using data extracted from both primary and secondary coating areas. The best classifier, marked in
gray, was the kNN with k = 6 and an accuracy level (percentage of correctly classified instances)
close to 71%.

Classifier Accuracy MAE RMSE AUC

Bayes network (K2) 66.36 0.39 0.45 0.66
Bayes network (hill climber) 63.50 0.44 0.49 0.49
Bayes network (TAN) 68.62 0.41 0.47 0.61

Naïve Bayes 68.80 0.39 0.45 0.68

Artificial neural network MLP 62.02 0.42 0.49 0.59

Support vector machines (polynomial kernel) 66.96 0.33 0.57 0.49
Support vector machines (normalized polynomial Kernel) 66.84 0.33 0.57 0.51
Support vector machines (Pearson VII) 67.93 0.32 0.55 0.56
Support vector machines (radial basis function) 68.75 0.31 0.56 0.50

Voted perceptron 70.09 0.30 0.53 0.66

K-nearest neighbors (K = 1) 69.55 0.39 0.48 0.63
K-nearest neighbors (K = 2) 69.84 0.39 0.48 0.63
K-nearest neighbors (K = 3) 69.84 0.40 0.48 0.62
K-nearest neighbors (K = 4) 69.84 0.41 0.47 0.62
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Table 4. Cont.

Classifier Accuracy MAE RMSE AUC

K-nearest neighbors (K = 5) 69.84 0.41 0.47 0.64
K-nearest neighbors (K = 6) 71.48 0.41 0.47 0.65
C4.5 63.91 0.45 0.48 0.46

Random forest (num. iterations = 50) 65.66 0.41 0.47 0.62
Random forest (num. iterations = 100) 66.20 0.41 0.47 0.62
Random forest (num. iterations = 150) 66.48 0.41 0.47 0.62
Random forest (num. iterations = 200) 67.04 0.41 0.47 0.62
Random forest (num. iterations = 250) 67.45 0.41 0.47 0.61
Random forest (num. iterations = 300) 66.91 0.41 0.47 0.61
Random forest (num. iterations = 350) 67.34 0.41 0.47 0.61

Primary, Secondary Coatings and Melting Area Predictions

Finally, using the complete dataset (i.e., data from the three selected areas), the accuracy
of the classical machine learning models was tested. First, we extracted the results for
elongation prediction, which are shown in Table 5. With the full dataset, the classifiers once
again approximated their results to those obtained when only primary coating data were
included in the predictive models. In this experiment, we observe that the best classifier,
kNN with k = 6, is able to match or even outperform the best classifier from the first
analysis (another kNN, but in that case with k = 2). Comparing the other classifiers,
they achieved similar accuracy levels and, in fact, were close to the results obtained when
using other subsets of information for their learning phase. Although the best result was
obtained with the full dataset (including data from all three areas), it is not certain that the
performance of the classifiers improves when using the complete dataset. This leads us
to conclude that, in predicting the elongation of a part at a future state t + 1, the primary
coating stage is the most influential factor affecting the final behavior of this mechanical
property.

Table 5. Results predicting the mechanical property elongation when we applied classical machine
learning methods using data extracted from both primary and secondary coating areas in addition to
melting data. The best classifier, marked in gray, was the kNN with k = 6, achieving an accuracy
level (percentage of correctly classified instances) close to 80%.

Classifier Accuracy MAE RMSE AUC

Bayes network (K2) 73.83 0.29 0.40 0.83
Bayes network (hill climber) 73.45 0.33 0.43 0.79
Bayes network (TAN) 76.52 0.30 0.40 0.81

Naïve Bayes 75.93 0.29 0.39 0.83

Artificial neural network MLP 73.98 0.28 0.44 0.79

Support vector machines (polynomial kernel) 71.48 0.29 0.50 0.72
Support vector machines (normalized polynomial kernel) 75.62 0.24 0.44 0.76
Support vector machines (Pearson VII) 72.93 0.27 0.48 0.73
Support vector machines (radial basis function) 60.38 0.40 0.61 0.64

Voted perceptron 72.69 0.27 0.47 0.80

K-nearest neighbors (K = 1) 72.07 0.36 0.50 0.68
K-nearest neighbors (K = 2) 73.93 0.37 0.46 0.75
K-nearest neighbors (K = 3) 78.83 0.36 0.43 0.81
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Table 5. Cont.

Classifier Accuracy MAE RMSE AUC

K-nearest neighbors (K = 4) 79.67 0.36 0.42 0.82
K-nearest neighbors (K = 5) 79.24 0.35 0.41 0.83
K-nearest neighbors (K = 6) 80.29 0.35 0.41 0.84
C4.5 65.43 0.41 0.49 0.68
Random forest (num. iterations = 50) 72.62 0.35 0.43 0.81
Random forest (num. iterations = 100) 72.90 0.34 0.43 0.81
Random forest (num. iterations = 150) 72.79 0.34 0.43 0.81
Random forest (num. iterations = 200) 72.33 0.34 0.43 0.81
Random forest (num. iterations = 250) 72.19 0.34 0.43 0.81
Random forest (num. iterations = 300) 72.19 0.35 0.43 0.81
Random forest (num. iterations = 350) 72.19 0.35 0.43 0.81

Second, we tested how well the models performed in predicting the appearance of
porosities. Considering all the results achieved using the three different datasets, we can
confirm that ex ante detection of this problem is more complex than predicting elongation.
Additionally, when analyzing the results in Table 6, we observed once again that data from
the secondary coating and melting stages introduced noise and negatively affected classifier
performance. In this case, the naïve Bayes classifier achieved the best results, surpassing
the kNN with k = 1 from the first analysis, which used only primary coating data.

Table 6. Results predicting porosity apparition when we applied classical machine learning methods
using data extracted from both primary and secondary coating areas in addition to melting data.
The best classifier, marked in gray, was naïve Bayes giving an accuracy level (percentage of correctly
classified instances) of close to 70%.

Classifier Accuracy MAE RMSE AUC

Bayes network (K2) 69.45 0.39 0.45 0.66
Bayes network (hill climber) 66.14 0.44 0.49 0.49
Bayes network (TAN) 65.80 0.41 0.47 0.61
Naïve Bayes 70.55 0.41 0.46 0.62
Artificial neural network MLP 67.32 0.42 0.48 0.56

Support vector machines (polynomial kernel) 68.46 0.32 0.56 0.50
Support vector machines (normalized polynomial kernel) 66.93 0.33 0.57 0.49
Support vector machines (Pearson VII) 64.04 0.36 0.59 0.51
Support vector machines (radial basis function) 68.75 0.31 0.56 0.50

Voted perceptron 66.80 0.33 0.56 0.61

K-nearest neighbors (K = 1) 68.68 0.43 0.48 0.54
K-nearest neighbors (K = 2) 68.68 0.43 0.48 0.54
K-nearest neighbors (K = 3) 68.68 0.43 0.48 0.55
K-nearest neighbors (K = 4) 68.68 0.42 0.47 0.59
K-nearest neighbors (K = 5) 68.68 0.42 0.47 0.59
K-nearest neighbors (K = 6) 68.68 0.42 0.47 0.60

C4.5 66.91 0.44 0.47 0.49
Random forest (num. iterations = 50) 67.04 0.43 0.48 0.55
Random forest (num. iterations = 100) 67.05 0.42 0.48 0.55
Random forest (num. iterations = 150) 67.29 0.42 0.48 0.54
Random forest (num. iterations = 200) 67.04 0.42 0.48 0.54
Random forest (num. iterations = 250) 66.77 0.42 0.48 0.54
Random forest (num. iterations = 300) 67.05 0.42 0.48 0.54
Random forest (num. iterations = 350) 66.64 0.42 0.48 0.54



Appl. Sci. 2025, 15, 2013 24 of 35

3.2.2. Prediction Models Applying Meta-Classifiers

After the previous work testing the performance of classical classifiers, we continued
our research to analyze and understand the behavior of predictions when using meta-
classifiers. In summary, the use of these algorithms aims to mitigate the issues related to
testing and selecting classifiers for each target. Although they do not necessarily achieve
better results, they stabilize the prediction processes. Next, we describe the measurements
conducted in the prediction steps associated with each grouped dataset and both targets,
namely elongation and porosity occurrence.

Primary Coating Area Predictions

In the first experiment, focused on predicting elongation, we reproduced the previ-
ous experiments using the same dataset from the primary coating area to perform meta-
classification-based predictions (see results in Table 7). In this case, we observe that, in
general, the process remains fairly stable, with most algorithms achieving an accuracy of
around 75%. This corroborates the expected performance of meta-classification algorithms.
Specifically, the method that obtained the best results was grading using a C4.5 decision
tree, achieving an accuracy of 76%, very close to the best classical classifier, which reached
79%. On the other hand, while grading is a more complex method compared to others, the
simpler majority voting approach still achieved a notable accuracy of 75%. In fact, it per-
formed almost as well as the best meta-classification method while offering the advantage
of a simpler model combination approach.

Table 7. Results predicting mechanical property elongation when we applied a combination of
classical machine learning methods through a meta-classifier using data extracted only from the
primary coating area. The best meta-classifier, marked in gray, was the grading method using a C4.5
decision tree for the combination with an accuracy level (percentage of correctly classified instances)
of close to 76%.

Classifier Accuracy MAE RMSE AUC

By vote (minimum probability) 50.02 0.20 0.36 0.68
By vote (maximum probability) 68.40 0.41 0.45 0.77
By vote (average of probabilities) 74.74 0.33 0.42 0.78
By vote (product of probabilities) 50.02 0.20 0.36 0.68
By vote (majority voting) 75.48 0.25 0.46 0.76

Grading (meta: naïve Bayes) 75.74 0.24 0.46 0.76
Grading (Bayes network–TAN) 74.62 0.25 0.47 0.75
Grading (meta: K-nearest neighbors with K = 1) 75.02 0.25 0.47 0.75
Grading (Meta: K-nearest neighbors with K = 2) 75.17 0.25 0.46 0.75
Grading (Meta: K-nearest neighbors with K = 3) 75.02 0.25 0.46 0.75
Grading (Meta: K-nearest neighbors with K = 4) 75.02 0.25 0.46 0.75
Grading (Meta: K-nearest neighbors with K = 5) 75.02 0.25 0.46 0.75
Grading (C4.5) 76.07 0.24 0.45 0.76
Stacking (meta: naïve Bayes) 75.33 0.25 0.46 0.80
Stacking (Bayes network–TAN) 74.67 0.27 0.44 0.77
Stacking (meta: K-nearest neighbors with K = 1) 73.40 0.28 0.48 0.73
Stacking (meta: K-nearest neighbors with K = 2) 70.19 0.31 0.47 0.73
Stacking (meta: K-nearest neighbors with K = 3) 71.17 0.32 0.46 0.75
Stacking (meta: K-nearest neighbors with K = 4) 73.52 0.32 0.44 0.76
Stacking (meta: K-nearest neighbors with K = 5) 73.50 0.33 0.44 0.78
Stacking (C4.5) 72.90 0.31 0.46 0.74

Multi-scheme (Bayes network–TAN) 72.07 0.33 0.48 0.70
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Then, using the same dataset, integrating only the primary coating data, we performed
the same evaluation to predict the behavior of the manufactured castings in terms of
porosity formation. In this experiment (results shown in Table 8), we observed that the
best method was multi-scheme, a fairly simple approach that achieved 75% accuracy. This
result is comparable to that obtained by the classical unary classifiers analyzed earlier. In
any case, when seeking the simplest combination method, classification by majority voting
performed very similarly to the best of the combination methods. It should also be noted
that the most stable method was grading, as every model achieved close to 75% accuracy.
However, in the case of Stacking, we observed fluctuations, with accuracy results ranging
between 60% and 73%.

Table 8. Results predicting the porosity apparition when we applied a combination of classical
machine learning methods through a meta-classifier using data extracted only from the primary
coating area. The best meta-classifier, marked in gray, was the multi-scheme method using a TAN
Bayesian network with an accuracy level (percentage of correctly classified instances) of close to 75%.

Classifier Accuracy MAE RMSE AUC

By vote (minimum probability) 54.62 0.25 0.46 0.58
By vote (maximum probability) 68.75 0.43 0.45 0.67
By vote (average of probabilities) 72.32 0.37 0.44 0.70
By vote (product of probabilities) 54.62 0.25 0.46 0.58
By vote (majority voting) 71.52 0.28 0.52 0.58

Grading (meta: naïve Bayes) 71.50 0.28 0.52 0.59
Grading (Bayes network–TAN) 70.77 0.29 0.52 0.59
Grading (meta: K-nearest neighbors with K = 1) 71.07 0.29 0.52 0.59
Grading (meta: K-nearest neighbors with K = 2) 71.07 0.29 0.52 0.59
Grading (meta: K-nearest neighbors with K = 3) 70.39 0.30 0.53 0.57
Grading (meta: K-nearest neighbors with K = 4) 70.66 0.29 0.53 0.57
Grading (meta: K-nearest neighbors with K = 5) 70.80 0.29 0.53 0.57
Grading (C4.5) 70.84 0.29 0.53 0.57

Stacking (meta: naïve Bayes) 61.87 0.38 0.58 0.71
Stacking (Bayes network–TAN) 69.73 0.40 0.47 0.56
Stacking (meta: K-nearest neighbors with K = 1) 66.12 0.35 0.55 0.61
Stacking (meta: K-nearest neighbors with K = 2) 72.39 0.34 0.49 0.63
Stacking (meta: K-nearest neighbors with K = 3) 69.12 0.35 0.47 0.65
Stacking (meta: K-nearest neighbors with K = 4) 73.82 0.36 0.46 0.64
Stacking (meta: K-nearest neighbors with K = 5) 72.12 0.36 0.45 0.64
Stacking (C4.5) 69.18 0.34 0.49 0.62
Multi-scheme (Bayes network–TAN) 75.62 0.28 0.42 0.76

Primary and Secondary Coating Area Predictions

As the second phase of the experiment for the ex ante predictive system in the in-
vestment casting process, following the same approach as with the classical classifiers,
we concatenated the information from the primary and secondary coatings to perform
elongation prediction. In this new test (shown in Table 9), we achieved accuracy ratios
very similar to those obtained with simple classifiers. In fact, the best algorithm was the
“by vote” method, which employs the mean of probabilities. Its accuracy was 76.5%, nearly
matching the 76.95% achieved with the corresponding Bayesian network. Thus, in search
of an even simpler method than the one that produced the best results, the majority voting
method again performed comparably to the best meta-classification algorithm. Once again,
grading proved to be the most stable method, as indicated by its precision percentages and
error rates, all of which followed a consistent performance trend.
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Table 9. Results predicting the mechanical property elongation when we applied a combination of
classical machine learning methods through a meta-classifier using data extracted from both primary
and secondary coating areas. The best meta-classifier, marked in gray, was by vote through the
average of probabilities, with an accuracy level (percentage of correctly classified instances) of close
to 77%.

Classifier Accuracy MAE RMSE AUC

By vote (minimum probability) 63.00 0.19 0.35 0.75
By vote (maximum probability) 73.83 0.40 0.43 0.81
By vote (average of probabilities) 76.50 0.31 0.40 0.83
By vote (product of probabilities) 63.00 0.19 0.35 0.75
By vote (majority voting) 74.95 0.25 0.46 0.75

Grading (meta: naïve Bayes) 73.86 0.26 0.47 0.74
Grading (Bayes network–TAN) 74.05 0.26 0.47 0.74
Grading (meta: K-nearest neighbors with K = 1) 74.12 0.26 0.47 0.74
Grading (meta: K-nearest neighbors with K = 2) 72.60 0.27 0.49 0.73
Grading (meta: K-nearest neighbors with K = 3) 73.14 0.27 0.48 0.73
Grading (meta: K-nearest neighbors with K = 4) 73.00 0.27 0.48 0.73
Grading (meta: K-nearest neighbors with K = 5) 73.29 0.27 0.48 0.73
Grading (C4.5) 74.17 0.26 0.47 0.74

Stacking (meta: naïve Bayes) 75.12 0.25 0.46 0.80
Stacking (Bayes network–TAN) 70.05 0.30 0.48 0.77
Stacking (meta: K-nearest neighbors with K = 1) 67.29 0.33 0.53 0.68
Stacking (meta: K-nearest neighbors with K = 2) 66.86 0.33 0.48 0.72
Stacking (meta: K-nearest neighbors with K = 3) 68.90 0.33 0.46 0.74
Stacking (meta: K-nearest neighbors with K = 4) 70.05 0.33 0.45 0.76
Stacking (meta: K-nearest neighbors with K = 5) 72.00 0.33 0.44 0.77
Stacking (C4.5) 66.21 0.36 0.52 0.65

Multi-scheme (Bayes network–TAN) 74.67 0.25 0.44 0.77

Subsequently, performing the same experiment but now focusing on detecting the
appearance of shrinkages, we observed that the theoretical basis described in Section 2.2
was correct. The results shown in Table 10 illustrate how the meta-classifiers approximate
the performance of the best single classical classifier. The “by vote” method (using the mean
of probabilities) achieved almost the same performance as the kNN classifier in the original
experiment. Moreover, methods such as majority voting, a simple union model, practically
match these results, offering a success rate of 70%. Although it achieved a slightly lower
accuracy, grading remained the most stable method. In contrast, stacking did not perform
as well as the other methods, suggesting that it is not well suited for this specific case.

Table 10. Results predicting the porosity apparition when we applied a combination of classical
machine learning methods through a meta-classifier using data extracted from both primary and
secondary coating areas. The best meta-classifier, marked in gray, was by vote through the average of
probabilities, with an accuracy level (percentage of correctly classified instances) of close to 71%.

Classifier Accuracy MAE RMSE AUC

By vote (minimum probability) 59.91 0.28 0.52 0.56
By vote (maximum probability) 68.75 0.42 0.46 0.60
By vote (average of probabilities) 71.27 0.39 0.47 0.63
By vote (product of probabilities) 59.91 0.28 0.52 0.56
By vote (majority voting) 69.80 0.30 0.54 0.58

Grading (meta: naïve Bayes) 70.12 0.30 0.53 0.58
Grading (Bayes network–TAN) 70.84 0.29 0.52 0.59
Grading (meta: K-nearest neighbors with K = 1) 70.27 0.30 0.53 0.59
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Table 10. Cont.

Classifier Accuracy MAE RMSE AUC

Grading (meta: K-nearest neighbors with K = 2) 70.27 0.30 0.53 0.59
Grading (meta: K-nearest neighbors with K = 3) 70.27 0.30 0.53 0.59
Grading (meta: K-nearest neighbors with K = 4) 70.27 0.30 0.53 0.59
Grading (meta: K-nearest neighbors with K = 5) 70.27 0.30 0.53 0.59
Grading (C4.5) 69.37 0.31 0.54 0.58

Stacking (meta: naïve Bayes) 50.96 0.49 0.67 0.58
Stacking (Bayes network–TAN) 68.32 0.43 0.47 0.49
Stacking (meta: K-nearest neighbors with K = 1) 62.59 0.40 0.57 0.55
Stacking (meta: K-nearest neighbors with K = 2) 65.55 0.42 0.54 0.54
Stacking (meta: K-nearest neighbors with K = 3) 62.34 0.41 0.51 0.57
Stacking (meta: K-nearest neighbors with K = 4) 65.45 0.41 0.50 0.57
Stacking (meta: K-nearest neighbors with K = 5) 63.25 0.43 0.50 0.56
Stacking (C4.5) 59.12 0.44 0.55 0.52

Multi-scheme (Bayes network–TAN) 62.62 0.41 0.49 0.61

Primary, Secondary Coatings and Melting Area Predictions

Continuing, when we applied data from the three identified stages, we analyzed the
prediction of elongation. The obtained results are shown in Table 11. In this experiment,
the meta-classification methods were unable to achieve the same performance ratios as the
classical ones. In this evaluation, once again, grading proved to be the most stable algorithm,
obtaining very similar accuracy values across all tested methods, as well as consistent error-
handling measurements. Nevertheless, it is surprising that for this prediction task and
dataset, the highest-rated algorithm was one of those created using stacking. It appears
to have been better at managing the noise introduced by the addition of new information.
Despite this, grading remained close behind. Later, in search of a simpler approach, we
re-evaluated the simplest algorithms, such as majority voting. This method performed
only three percentage points below the best meta-classification method, which is acceptable
given the simplification it provides.

Table 11. Results predicting the mechanical property elongation when we applied a combination of
classical machine learning methods through a meta-classifier using data extracted from both primary
and secondary coating areas in addition to melting data. The best meta-classifier, marked in gray,
was the stacking method using a TAN Bayesian network for combining the results, with an accuracy
level (percentage of correctly classified instances) of close to 77%.

Classifier Accuracy MAE RMSE AUC

By vote (minimum probability) 48.79 0.19 0.34 0.67
By vote (maximum probability) 69.74 0.41 0.45 0.80
By vote (average of probabilities) 73.17 0.33 0.41 0.82
By vote (product of probabilities) 48.79 0.19 0.34 0.67
By vote (majority voting) 73.64 0.26 0.47 0.74

Grading (meta: naïve Bayes) 74.55 0.25 0.46 0.75
Grading (Bayes network–TAN) 74.21 0.26 0.47 0.74
Grading (meta: K-nearest neighbors with K = 1) 74.07 0.26 0.46 0.74
Grading (meta: K-nearest neighbors with K = 2) 73.43 0.27 0.48 0.73
Grading (meta: K-nearest neighbors with K = 3) 73.71 0.26 0.47 0.74
Grading (meta: K-nearest neighbors with K = 4) 74.02 0.26 0.47 0.74
Grading (meta: K-nearest neighbors with K = 5) 74.45 0.26 0.46 0.74
Grading (C4.5) 74.48 0.26 0.46 0.74



Appl. Sci. 2025, 15, 2013 28 of 35

Table 11. Cont.

Classifier Accuracy MAE RMSE AUC

Stacking (meta: naïve Bayes) 73.67 0.26 0.47 0.83
Stacking (Bayes network–TAN) 76.83 0.26 0.42 0.80
Stacking (meta: K-nearest neighbors with K = 1) 70.21 0.30 0.50 0.71
Stacking (meta: K-nearest neighbors with K = 2) 71.26 0.31 0.47 0.75
Stacking (meta: K-nearest neighbors with K = 3) 74.24 0.31 0.45 0.76
Stacking (meta: K-nearest neighbors with K = 4) 76.43 0.32 0.44 0.77
Stacking (meta: K-nearest neighbors with K = 5) 75.81 0.32 0.43 0.78
Stacking (C4.5) 70.52 0.33 0.48 0.70

Multi-scheme (Bayes network–TAN) 71.10 0.30 0.46 0.78

Then, the final work focused on meta-classification algorithms using the complete
dataset to predict the occurrence of shrinkages. Table 12 summarizes all gathered results.
Recalling that the best classical classifier was naïve Bayes with a success rate of 70.55%, in
this experiment, we obtained values close to 69% when using the by vote method under the
maximum probability algorithm. For this prediction use case, all the algorithms performed
very similarly. Thus, both simple and complex algorithms demonstrated their ability to
perform the prediction task at comparable levels. In fact, the majority voting method
produced results nearly identical to those of the best meta-classification method and even
the best-performing classification algorithm. Once again, this experiment reinforces that
meta-classification could be a viable option for mitigating the challenges associated with
classical machine learning algorithms.

Table 12. Results predicting the porosity apparition when we applied a combination of classical
machine learning methods through a meta-classifier using data extracted from both primary and
secondary coating areas in addition to melting data. The best meta-classifier, marked in gray, was
the by vote under maximum probability method, with an accuracy level (percentage of correctly
classified instances) of close to 69%.

Classifier Accuracy MAE RMSE AUC

By vote (minimum probability) 59.30 0.30 0.54 0.51
By vote (maximum probability) 68.75 0.42 0.46 0.57
By vote (average of probabilities) 65.14 0.41 0.47 0.57
By vote (product of probabilities) 59.30 0.30 0.54 0.51
By vote (majority voting) 68.41 0.32 0.55 0.60

Grading (meta: naïve Bayes) 67.46 0.33 0.56 0.57
Grading (Bayes network–TAN) 65.95 0.34 0.58 0.55
Grading (meta: K-nearest neighbors with K = 1) 67.73 0.32 0.56 0.58
Grading (meta: K-nearest neighbors with K = 2) 67.73 0.32 0.56 0.58
Grading (meta: K-nearest neighbors with K = 3) 68.02 0.32 0.56 0.58
Grading (meta: K-nearest neighbors with K = 4) 68.02 0.32 0.56 0.58
Grading (meta: K-nearest neighbors with K = 5) 68.02 0.32 0.56 0.58
Grading (C4.5) 65.82 0.34 0.58 0.54

Stacking (meta: naïve Bayes) 63.34 0.37 0.57 0.53
Stacking (Bayes network–TAN) 68.59 0.43 0.46 0.50
Stacking (meta: K-nearest neighbors with K = 1) 66.29 0.37 0.53 0.58
Stacking (meta: K-nearest neighbors with K = 2) 67.54 0.38 0.51 0.55
Stacking (meta: K-nearest neighbors with K = 3) 66.62 0.39 0.51 0.54
Stacking (meta: K-nearest neighbors with K = 4) 67.05 0.39 0.50 0.53
Stacking (meta: K-nearest neighbors with K = 5) 68.12 0.39 0.50 0.55
Stacking (C4.5) 63.25 0.42 0.51 0.54

Multi-scheme (Bayes network–TAN) 67.66 0.42 0.47 0.58
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Finally, it should be noted that the models used in this study do not require high
computational costs. To enhance the readability of this paper, a brief summary is provided
below instead of presenting all the detailed tables. For classical classifiers, training times
do not exceed 0.09 s per fold (in the case of ANN with MLP), while testing times do not
even reach 0.0003 s. In the case of meta-classifiers, learning times are higher, reaching about
3 s per fold in the worst cases (i.e., using grading). However, testing times do not exceed
0.01 s. These results indicate that these predictors could be used in a real-time solution.

3.3. Retro-Feedback for Controlling and Adjusting the Manufacturing Parameters

As presented in Section 2.3, a system responsible for detecting anomalies must com-
plement a system designed to optimize the process by eliminating the detected problems.
Thus, the same section explains how this element of our system of systems completes the
described digital twin, closing the loop and providing feedback to the plant to implement
the proposed corrective actions.

After the study conducted on anomaly detection based on predictions using machine
learning models (see the previous section), we observed that detection works best in the
primary coating stage. Nevertheless, the system was not modified, and all checks are still
being performed. Thus, when any anomaly is detected in the first stage, attempts will be
made to resolve it. In some cases, the issue may be corrected, while in others, the problem
may persist. In the latter case, the current situation is continuously analyzed in subsequent
detection and optimization steps. Otherwise, if no failures are found in that stage and
the process advances to the next one, the digital twin will perform the checking operation
again, continuing this cycle until all validation checkpoints have been passed.

It should be noted that the importance of this area could change due to modifications
in the depth of the learning dataset. Similarly, the recommendations generated could also
change depending on the requirements at that time. Even so, the system will need to
adapt to new production references and emerging trends. This concludes that the recom-
mendation system must evolve and be adjusted to the changing cycle of a manufacturing
process.

The error rates of the production process where this technology has been deployed
are low, not exceeding 12% of the produced parts. Considering the original number of
faulty castings, the artificial intelligence-based detection system identified 84% of them
in the first stage (primary coating). Practically all of these were subsequently resolved by
the recommender system. Thus, in the following checks, the parts remained correct and
successfully completed the manufacturing process. A small portion, less than 7% of the
detections, progressed to the subsequent checkpoints, where some were detected again
and corrected. The proposed corrections generated by the recommender system validated
that the production limits defined by engineers were appropriate and that adjusting all
parameters to those limits was sufficient to address the detected problems. However, in 2%
of cases where a change was triggered, it was necessary to adapt the production ranges to
optimize the expected manufactured parts. Consequently, for the same reference, different
production levels or trends were required depending on the specific production parameters
of each part.

In the same way, and in an effort to evaluate the computational cost of the advisor sys-
tem, we measured that the results are computed in less than 0.001 s. Thus, the combination
of predictions with optimization does not exceed 1 second. This fact enables the complete
proposed system to be used in a real-time investment casting production process.

In summary, it is a promising system that can be modified in both knowledge and
techniques, providing better performance. Nevertheless, the current development has
reduced casting rejections to 8%. Moreover, at this moment, aluminum elongation has
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improved, increasing from 3.5% to 4.5%. Hence, despite the good results obtained, we
must point out that since the accuracy of the prediction systems is not as high as desired,
some faulty parts remain undetected. However, it is important to consider that the system
is still in its early stages and does not yet have large volumes of data for training these
learning processes. Improving the detection and prediction systems will directly lead to
better early detection and more effective application of the corrective actions generated by
our recommender system.

4. Discussion and Conclusions
The investment casting production process generates parts for industries such as

aeronautics, where high levels of precision and quality are required. Thus, many research
efforts focus on developing tools to mitigate these types of problems. To that end, this
research aims to address two of the most critical defects. On the one hand, it focuses
on mitigating the appearance of porosities. On the other hand, it works to ensure that
elongation values remain within the predefined desired ranges. The contributions made by
the research team to achieve the previously described objective are listed below.

First of all, to achieve the aforementioned objectives, the research team worked on
improving digitization and reality representation in a digital environment. Specifically, the
tasks carried out were guided by a data analysis plan that included: (i) the identification
of available data and data that, although initially unavailable, could later be digitized
and extracted, (ii) an audit of the status of each area and its variables, (iii) a study of the
impact and priority of the areas and their respective variables, and (iv) the creation of a
centralized data repository for storing captured data. This last task was accomplished
using an agent-based system such as PDManager.

Later, all retrieved data should be exploited. Hence, the first step was to create a low-
maturity-level digital twin focused on remote visualization and monitoring. To achieve
this, we worked on defining what data should be displayed, when it should be displayed,
to whom, and in what manner. This work was translated into the definition of the message
communication protocol for information distribution, the design, and the creation of 25
different dashboard screens. Finally, these designed screens were installed in the plant to
be useful for workers.

Then, the digital twin was evolved to a higher degree of maturity to operate proactively
rather than reactively. The new system integrates simulation and optimization tasks.
The simulation, in other words, the predictions, was performed using machine learning.
Specifically, supervised learning algorithms were used, as the data gathering process
provided labeled output variables for the final prediction. In this research, an extensive
analysis was conducted, first evaluating classical unary statistical classifiers and then
applying meta-classification algorithms to mitigate the issues associated with traditional
classifiers. The results achieved were consistent with the literature. In other words, meta-
classifiers performed their predictions as effectively as unary classifiers, achieving accuracy
percentages very close to classical methods while avoiding their inherent limitations.

Regarding the optimization process, an advisor system was created using the extracted
knowledge of the process. Part of that knowledge was manually gathered from workers
and engineers, while the other part was automatically generated from the already collected
data. This optimization tool is triggered when the aforementioned predictors detect a
critical situation. Once the tool is launched, the calculation process begins to determine the
best corrective action if needed, and finally, the recommended actions are communicated to
the workers.

Although the results obtained are very promising, we have identified some shortcom-
ings, which are discussed below.
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• Amount of data: As the system was developed during this research, the datasets used
for the artificial intelligence learning process were small. The ways to address this
limitation are: (i) waiting for the dataset to grow as the foundry continues production
or (ii) generating synthetic data using techniques such as Monte Carlo simulations [70]
or the application of Generative Adversarial Networks (GANs) [71]. Hence, it is
expected that when the data quantity increases, the prediction and optimization results
will be better. In fact, as is described in [72], as data grow and evolve, a methodology
must be implemented to ensure that machine learning models are developed, tested,
and deployed in a consistent and reliable manner. Currently, this methodology is not
yet defined, making it one of the key areas for future work.

• Accuracy of prediction models: The accuracy achieved by the models was not high.
First, the problem may be related to the volume of the datasets. This has already
been discussed in the previous point. On the other hand, accuracy may be improved
by using newer models, such as deep neural networks [73]. Therefore, future work
should focus on identifying better machine learning models capable of representing
the manufacturing process more accurately. Moreover, readers must consider that
achieving a high accuracy level in machine learning models is subjective. In fact, while
accuracy measurements between 70% and 90% may not be ideal, they are realistic, as
the current process and workers are not capable of consistently reaching such levels of
precision.

• Simple optimization algorithms: Optimization and planning problems are among
the most complex in the field of artificial intelligence. For this reason, and given that
this research focused on developing an initial prototype, we decided to implement a
simple recommendation system based on basic algorithms. However, incorporating
new algorithms [74] could enhance the feedback provided to the plant. Additionally,
if a computational bottleneck is detected, it may be possible to develop a hybrid
system capable of executing quantum optimization algorithms [75] and subsequently
processing them using conventional programming techniques.

• Reduced optimization objectives: This work was done to optimize a defect and a me-
chanical property. However, there are many more defects and many more mechanical
properties [5] that should be added in a further research.

• Adaptation to new production trends and changes in manufacturing parameters: Clas-
sification systems may become obsolete over time due to changes in manufacturing
processes. This is particularly relevant when systems must quickly adapt to different
types of data and new castings. The main limitation of traditional classifiers is that
they cannot autonomously adjust when receiving new information. To address this
challenge, an approach based on continuous learning is proposed, where old models
are replaced by new ones, iteratively adapting to changes. A key technique for this
process is “sample aging of data” (as a fading factor), which assigns greater weight
to new evidence, compensating for the reduced representativeness of older samples.
One possible approach is the use of Bayesian compression and Monte Carlo methods
to integrate old and new data, enabling the rapid development of new models that
achieve higher accuracy. This process facilitates continuous updates and improves
state prediction in dynamic systems [76,77]. On the other hand, techniques such as
reinforcement learning could provide a solution by adjusting models based on real
outcomes observed during the production process [78].

The problems listed and the possible solutions described define the future work to
be developed in order to ultimately achieve the most advanced digital twin possible. The
desired solution will not only address the issues identified in this research but also many
other challenges present in the production process.
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